DETEKSI OBJEK KENDARAAN TANK DENGAN MODEL YOLO DALAM PENGAWASAN WILAYAH DARAT

Authors

  • Alvido Bintang Zaidan, Muhammad Azka Firdaus, Ahmad Ilham Irianto, Paskaliya Seren Wesal Teknik Elektro Universitas Pertahanan Republik Indonesia

Keywords:

Tank Detection, YOLOv9

Abstract

The land area of a country has a state border area that can occur threats and conflicts such as tank vehicles that can penetrate into the territory of another country. The threat is overcome by object detection technology to detect tanks in land surveillance using the YOLO model. This research aims to obtain the results of the tank detection system data parameters, determine the tank detection process, and determine the effectiveness of the YOLO model in detecting tanks. The YOLO model used in the research is YOLOv9 by collecting tank image datasets to serve as a training dataset that will produce data parameters in object detection and evaluating model testing in the form of images, videos, and detection devices in the form of embedded systems integrated with cameras. Evaluation of tank detection in the form of simulation is tested using three different confidence values and using a dark or night scenario to determine the effectiveness of the YOLOv9 model in detecting tanks in that scenario. The results of the evaluation of the YOLOv9 model in tank image detection get 99.3% accuracy in the form of images and videos. The evaluation results in the scenario of three different confidence values can sort out the low accuracy value of tank detection according to the confidence value used and the results of tank detection in dark or night conditions are less effective in detecting tanks. This research is concluded to be able to produce tank detection system data parameters in the form of precision and recall, can find out the tank detection process, and the YOLO model becomes an effective object detection model in detecting tanks from the detection simulation results obtained.

References

Aggarwal, Ani (2020). ”YOLO Explained”. Medium. Retrieved from https://medium.com/analytics-vidhya/yolo-explained-5b6f4564f31

Brownlee, Jason (2021). “A Gentle Introduction to Object Recognition with Deep Learning”. Machine Learning Mastery. Retrieved from https://machinelearningmastery.com/object-recognition-with-deep-learning/

Keita, Zoumana (2022). “YOLO Object Detection Explained”. Datacamp. Retrieved from https://www.datacamp.com/blog/yolo-object-detection-explained

Khatami, Sauqi. (2022). “Deteksi Kendaraan Menggunakan Algoritma You Only Look Once (YOLO) V3”. Program Studi Informatika, Fakultas Teknologi Industri, Universitas Islam Indonesia. https://dspace.uii.ac.id/

Kundu, Rohit. (2023). “YOLO: Algorithm for Object Detection Explained”. V7 Labs. Retrieved from https://www.v7labs.com/blog/yolo-object-detection

Lin, Hanhe, Jeremiah D. Deng, Deike Albers, and Felix Wilhelm Siebert. 2020. “Helmet Use Detection of Tracked Motorcycles Using CNN-Based Multi-Task Learning.” IEEE Access 8(3): 162073–84.

Mochtar Kusumaatmadja (2006). "Hukum Internasional dan Politik Luar Negeri Indonesia". Pustaka Sinar Harapan, Jakarta.

Sumardja (2011). "Hukum Internasional: Perkembangan dan Penerapannya di Indonesia". PT RajaGrafindo Persada, Jakarta.

Ogorkiewicz, R. Marian (2022). tank. Encyclopedia Britannica. https://www.britannica.com/technology/tank-military-vehicle

Rahma, L., Syaputra, H., Mirza, H., Purnamasari, D. (2021). “Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once).” Jurnal Nasional Ilmu Komputer, Fakultas Teknik Ilmu Komputer, Universitas Bina Darma.

Redmon, J. et al. (2016) “You only look once: Unified, real-time object detection,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. doi: 10.1109/CVPR.2016.91.

Septarina, M. (2014). “Sengketa-Sengketa Perbatasan Di Wilayah Darat Indonesia.” ISSN 1979-4940. Retrieved from https://ojs.uniska-bjm.ac.id/

Stefen, Dion. (2022). “Implementasi Sistem Cerdas Pada Otomatisasi Pendeteksian Jenis Kendaraan di Simpang Empat Kampung Lalang.” Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Methodist Indonesia Medan.

Sulistyo, B., Toruan, L., Surryanto, D. (2020). “Penataan Wilayah Pertahanan Darat Aspek Dinamis Dalam Mewujudkan Strategi Pertahanan Berlapis Di Wilayah Propinsi Kalimantan Barat.” Jurnal Strategi Pertahanan Semesta (2020). Retrieved from https://jurnalprodi.idu.ac.id/

Liu, H.; Yu, Y.; Liu, S.;Wang, W. “A Military Object Detection Model of UAV Reconnaissance Image and Feature Visualization.” Appl. Sci. 2022, 12, 12236. Retrieved from https://doi.org/10.3390/app122312236

Wibawa, I. (2023). “Deteksi Objek Berbasis Citra Alat Musik Tradisional Jawa Barat Dengan Berbagai Skenario Pre-Processing Pada Metode Convolutional Neural Network.” Universitas Islam Negeri Maulana Malik Ibrahim.

Zou, Z., Shi, Z., Guo, Y., & Ye, J. (2019). “Object Detection in 20 Years: A Survey.” 1–39. Retrieved from http://arxiv.org/abs/1905.05055

Zvornicanin, Enes. (2023). “What Is YOLO Algorithm?”. Baeldung. Retrieved from https://www.baeldung.com/cs/yolo-algorithm

Downloads

Published

2024-07-11

Issue

Section

Articles