Vol. 3 No. 1 Juli 2025, hal. 92-103 e-ISSN: 2988-6287

RISK ASSESSMENT OF LIQUID CO₂ PRODUCTION USING HAZOP IN THE FERTILIZER INDUSTRY

1ST RINY YOLANDHA PARAPAT¹, 2ND ABEL ASHA MAHENDRA², 3RD DIYAS YASYA SYAHWALNA³,

1, 2, 3 Prodi Teknik Kimia, Institut Teknologi Nasional Bandung, PHH. Mustopha 23. 40123 Bandung, Indonesia e-mail: rinyyolandha@itenas.ac.id

Abstract

Risk identification and analysis are crucial aspects of process safety management in the chemical industry. This study applies the Hazard and Operability Study (HAZOP) method to identify potential hazards and operability issues in. The HAZOP method involves decomposing the system into nodes and applying guiding keywords to stimulate deviations from design parameters and normal operations. Each identified deviation is then evaluated to determine potential causes, consequences, and recommendations for mitigation actions. This analysis aims to provide a comprehensive understanding of the risks that may arise, including risks to safety, health, the environment, and financial losses. The results of this HAZOP study are expected to be the basis for developing effective risk control measures, improving system design, and developing safer operating procedures, thereby contributing to incident prevention and improving overall safety performance.

Keywords: HAZOP, Risk Assessment, Liquid CO₂, Process Safety, Fertilizer Industry

Abstrak

Identifikasi dan analisis risiko merupakan aspek penting dalam manajemen keselamatan proses di industri kimia. Studi ini menerapkan metode Hazard and Operability Study (HAZOP) untuk mengidentifikasi potensi bahaya dan masalah operabilitas dalam sistem. Metode HAZOP melibatkan pemecahan sistem menjadi beberapa node dan penerapan kata kunci panduan untuk menstimulasi penyimpangan dari parameter desain dan operasi normal. Setiap penyimpangan yang diidentifikasi kemudian dievaluasi untuk menentukan potensi penyebab, konsekuensi, dan rekomendasi tindakan mitigasi. Analisis ini bertujuan untuk memberikan pemahaman yang komprehensif terhadap risiko yang mungkin timbul, termasuk risiko terhadap keselamatan, kesehatan, lingkungan, dan kerugian finansial. Hasil studi HAZOP ini diharapkan dapat menjadi dasar dalam pengembangan langkah-langkah pengendalian risiko yang efektif, peningkatan desain sistem, dan pengembangan prosedur operasi yang lebih aman, sehingga berkontribusi terhadap pencegahan insiden dan peningkatan kinerja keselamatan secara keseluruhan.

Kata kunci: HAZOP, Risk Assessment, Liquid CO₂, Process Safety, Fertilizer Industry

PENDAHULUAN

Karbon dioksida (CO₂) adalah senyawa kimia yang secara alami terdapat di atmosfer Bumi dan memainkan peran penting dalam menjaga keseimbangan ekologi melalui keterlibatannya dalam siklus karbon global. Gas ini sangat esensial bagi kehidupan di Bumi, terutama karena perannya dalam fotosintesis, di mana tanaman menyerap CO₂ untuk menghasilkan oksigen dan senyawa organik. Meskipun peran CO₂ sangat mendasar dalam alam, emisi karbon dioksida yang berlebihan—yang terutama disebabkan oleh aktivitas antropogenik seperti pembakaran bahan bakar fosil, manufaktur industri, dan deforestasi—telah menimbulkan kekhawatiran global. Kekhawatiran tersebut muncul karena kontribusi utama CO₂ terhadap efek rumah kaca, yang menyebabkan pemanasan global dan dampak perubahan iklim yang meluas.

Namun, CO₂ tidak hanya dipandang sebagai produk samping atau polutan lingkungan. Seiring dengan meningkatnya kekhawatiran atas emisi, nilai industri dari CO₂ juga mulai dievaluasi kembali. Senyawa ini digunakan di berbagai sektor, termasuk makanan dan minuman, farmasi, peningkatan produksi minyak, sintesis kimia, pengelasan, dan pemadam kebakaran. Dualitas sifatnya—baik sebagai masalah maupun sumber daya—menjadikan karbon dioksida titik fokus dalam upaya mencapai keberlanjutan dan inisiatif ekonomi sirkular.

Dalam industri petrokimia dan pupuk, CO₂ umumnya diproduksi sebagai produk samping, terutama dalam proses yang melibatkan bahan baku hidrokarbon. Salah satu contohnya adalah sintesis amonia (NH₃), yang merupakan bahan baku utama dalam pembuatan pupuk urea. Selama proses reformasi uap yang digunakan untuk menghasilkan hidrogen dari gas alam atau naptha, sejumlah besar CO₂ dilepaskan sebagai bagian dari reaksi dekarbonisasi. Meskipun sebagian CO₂ dapat digunakan kembali secara internal dalam proses produksi urea (dengan bereaksi dengan amonia untuk membentuk urea), seringkali CO₂ yang berlebih tetap ada. Di banyak fasilitas, kelebihan CO₂ ini biasanya dilepaskan ke atmosfer atau hanya sebagian digunakan untuk aplikasi industri dalam skala terbatas.

Salah satu pabrik produksi pupuk urea terbesar di Indonesia menghasilkan volume CO₂ yang cukup besar sebagai produk samping dari operasi sintesis amonia yang berlangsung terus-menerus. Secara historis, CO₂ ini memiliki nilai ekonomi yang terbatas, sehingga sebagian besar dianggap sebagai limbah. Namun, dengan meningkatnya tekanan untuk mengurangi emisi gas rumah kaca, mengurangi dampak lingkungan, dan mematuhi target keberlanjutan nasional serta internasional, minat untuk memanfaatkan emisi CO₂ dari fasilitas industri seperti ini semakin berkembang.

Salah satu solusi yang menjanjikan adalah pengembangan sistem produksi CO₂ cair. Proses likuifikasi CO₂ mengubahnya dari produk samping berupa gas menjadi produk yang dapat diangkut dan memiliki nilai komersial. CO₂ cair (LCO₂) digunakan secara luas dalam industri makanan dan minuman—sebagai agen karbonasi dan pendingin—pada proses pengelasan sebagai gas pelindung, dalam sistem pemadam kebakaran, serta dalam enhanced oil recovery (EOR). Selain itu, CO₂ cair semakin dieksplorasi sebagai bahan baku untuk teknologi yang sedang berkembang, seperti bahan bakar sintetis, metanol hijau, dan proses mineralisasi karbon.

Pembentukan unit produksi CO₂ cair di sebuah fasilitas produksi urea tidak hanya sejalan dengan tujuan keberlanjutan, tetapi juga membuka peluang pendapatan baru. Sumber CO₂ yang kontinu dan relatif murni dari pabrik amonia menyediakan fondasi yang sangat baik untuk proses likuifikasi skala industri. Inti dari proses likuifikasi tersebut melibatkan pemampatan dan pendinginan CO₂ hingga mencapai titik jenuh pada kondisi tekanan dan suhu tertentu. Proses ini umumnya memerlukan beberapa tahap pemampatan, pendinginan antara (intercooling), pengeringan (untuk menghilangkan kelembapan), dan akhirnya pendinginan hingga mencapai suhu yang diinginkan untuk likuifikasi. Sistem pemurnian dan likuifikasi CO₂ yang dirancang dengan baik harus memenuhi standar kemurnian yang tinggi tergantung pada aplikasi produk yang diinginkan.

Namun, penerapan sistem produksi CO₂ cair tidak tanpa tantangan. Kelayakan teknis, konsumsi energi, kelayakan ekonomi, dan yang paling penting, keselamatan proses harus ditangani secara menyeluruh. Walaupun CO₂ tidak mudah terbakar dan tidak toksik dalam kondisi normal, ia memiliki bahaya tertentu ketika ditangani dalam sistem bertekanan. Pelepasan mendadak dapat menyebabkan asfiksia, luka akibat suhu dingin (cryogenic burns), kerusakan peralatan akibat pembentukan CO₂ padat (dry ice), atau kondisi overpressure. Oleh karena itu, perancangan teknik yang cermat dan penilaian risiko sangat penting dilakukan selama tahap perencanaan dan pengembangan fasilitas semacam ini.

Untuk memastikan operasi yang aman dan handal, sangat penting untuk melakukan studi Hazard and Operability (HAZOP) secara komprehensif sebagai bagian dari kerangka kerja manajemen keselamatan proses proyek. HAZOP merupakan teknik sistematis dan terstruktur yang digunakan untuk mengidentifikasi potensi penyimpangan dalam parameter proses (seperti tekanan, suhu, aliran, dan level) serta menilai konsekuensi dan risiko yang terkait dengan penyimpangan tersebut. Metode ini melibatkan pemecahan proses menjadi node-node (bagian-bagian proses), dan penerapan kata-kata panduan (misalnya, "lebih," "kurang," "tidak ada," "terbalik") untuk merangsang diskusi tentang apa yang bisa salah dalam kondisi operasi yang abnormal.

Dalam konteks produksi CO₂ cair, studi HAZOP akan memusatkan perhatian pada area-area kritis seperti:

- Tahap pemampatan CO₂ dan risiko overpressure yang potensial;
- Sistem intercooler dan pengeringan, di mana pengendalian suhu dan kelembapan sangat esensial:
- Unit likuifikasi itu sendiri, yang melibatkan kondisi kriogenik dan penanganan sistem bertekanan tinggi;
- Sistem penyimpanan dan transfer CO₂ cair, termasuk skenario overfilling tanki, kebocoran, dan ventilasi.

Setiap penyimpangan yang diidentifikasi dievaluasi berdasarkan penyebab, konsekuensi, pengaman yang ada, dan rekomendasi untuk peningkatan. Rekomendasi umum dapat mencakup pemasangan katup pelepas tekanan, peningkatan instrumentasi, perbaikan prosedur operasi, sistem shutdown darurat, dan pelatihan operator.

Tujuan dari pelaksanaan studi HAZOP bukan hanya untuk mematuhi persyaratan keselamatan regulasi, tetapi juga untuk mengintegrasikan langkah-langkah mitigasi risiko ke dalam tahap desain, sehingga mengurangi kemungkinan dan keparahan insiden potensial. Dengan mengidentifikasi bahaya secara proaktif, manajemen pabrik dapat mengambil tindakan korektif sebelum sistem diresmikan, sehingga melindungi personel, peralatan, dan lingkungan sekitar.

Selain itu, wawasan yang diperoleh dari analisis HAZOP dapat mendukung:

- Optimalisasi sistem kontrol proses;
- Perancangan rencana tanggap darurat dan kontinjensi;
- Kepatuhan terhadap standar internasional seperti ISO 45001 dan OSHA PSM;
- Peningkatan kepercayaan dari pemangku kepentingan dan badan pengawas mengenai komitmen fasilitas terhadap keunggulan operasional.

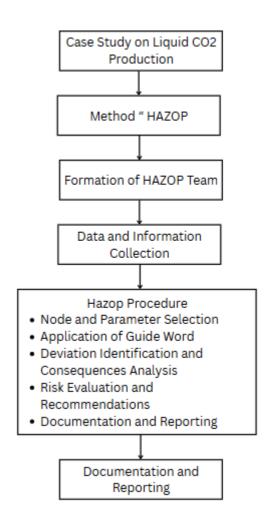
Sebagai kesimpulan, integrasi unit produksi CO₂ cair dalam pabrik pupuk urea merupakan peluang berharga untuk mengurangi dampak lingkungan dan meningkatkan efisiensi sumber daya melalui pemanfaatan ulang produk samping CO₂. Namun, peluang ini harus dihadapi dengan perencanaan teknis yang cermat, penilaian keselamatan yang mendalam, dan disiplin operasional yang tinggi. Dengan melakukan studi HAZOP secara menyeluruh, fasilitas dapat secara proaktif menangani potensi bahaya, meningkatkan keandalan proses, dan berkontribusi pada pembangunan industri yang berkelanjutan. Penelitian ini akan mengeksplorasi risiko dan tantangan yang terkait dengan implementasi produksi CO₂ cair, dengan fokus pada identifikasi penyimpangan operasional, penilaian ancaman keselamatan, dan pengembangan strategi mitigasi praktis.

METODE PENELITIAN

Penelitian ini merupakan penelitian berbasis studi kasus yang berfokus pada unit reaktor produksi CO₂. Pendekatan kualitatif digunakan dengan menerapkan metode Hazard and Operability Study (HAZOP) untuk mengidentifikasi potensi risiko dalam proses.

Data dalam penelitian ini mengenai potensi produksi CO₂ cair di fasilitas produksi urea diperoleh dari sebuah naskah yang menganalisis Keselamatan dan Kesehatan Kerja (K3) dalam proses produksi urea. Dokumen tersebut memberikan deskripsi teknis mengenai proses produksi, termasuk identifikasi aliran gas karbon dioksida (CO₂) sebagai produk samping, serta estimasi volume dan karakteristiknya.

Penelitian ini juga mempertimbangkan ketentuan regulasi seperti Keputusan Menteri Tenaga Kerja No. Kep-187/MEN/1999 tentang Pengendalian Bahan Kimia Berbahaya di Tempat Kerja, serta dokumentasi mengenai standar operasional dalam penanganan bahan kimia berbahaya yang mungkin tercantum dalam naskah. Informasi ini digunakan untuk mengevaluasi persyaratan keselamatan yang harus dipenuhi dalam potensi produksi CO₂ cair.


Dengan demikian, naskah yang menganalisis K3 dalam produksi urea merupakan sumber data yang sangat berharga untuk mengidentifikasi potensi sumber CO₂, memahami aspek keselamatan dalam penanganannya, dan mengevaluasi kelayakan implementasi produksi CO₂ cair di

fasilitas produksi urea. Pemanfaatan data ini mendukung pengambilan keputusan yang tepat dalam pengembangan praktik berkelanjutan dan eksplorasi peluang bisnis baru di industri pupuk.

Penelitian ini juga mempertimbangkan ketentuan regulasi seperti Keputusan Menteri Tenaga Kerja No. Kep-187/MEN/1999 tentang Pengendalian Bahan Kimia Berbahaya di Tempat Kerja, serta dokumentasi mengenai standar operasional dalam penanganan bahan kimia berbahaya yang mungkin tercantum dalam naskah. Informasi ini digunakan untuk mengevaluasi persyaratan keselamatan yang harus dipenuhi dalam potensi produksi CO₂ cair.

Dengan demikian, naskah yang menganalisis Keselamatan dan Kesehatan Kerja (K3) dalam proses produksi urea menjadi sumber data utama yang relevan untuk mengidentifikasi potensi sumber CO₂, memahami aspek keselamatan dalam penanganannya, dan mengevaluasi kelayakan implementasi produksi CO₂ cair di fasilitas produksi urea.

Pelaksanaan studi HAZOP pada unit reaktor produksi CO₂ dilakukan melalui tahapan-tahapan terstruktur sebagai berikut:

Gambar 1. Diagram Alir Proses untuk Analisis HAZOP pada Unit Produksi CO2 Cair

Tim HAZOP untuk unit reaktor produksi CO₂ terdiri dari personel lintas disiplin dengan pemahaman mendalam dan keahlian teknis dalam proses produksi urea. Komposisi tim meliputi:

- Process Engineer yang memahami kinetika reaksi dan tantangan operasional dalam produksi CO₂
- Operator Lapangan yang mengetahui operasi sehari-hari dan kondisi di lapangan
- Ahli Keselamatan dan Kesehatan Kerja (K3) yang memastikan identifikasi bahaya sesuai dengan peraturan keselamatan
- Maintenance Engineer yang bertanggung jawab atas keandalan dan integritas peralatan
- Fasilitator HAZOP (Moderator) yang memimpin diskusi, menerapkan kata kunci panduan, dan memastikan analisis dilakukan secara terstruktur

Tahap pengumpulan data melibatkan pengumpulan seluruh dokumentasi dan informasi historis yang relevan yang diperlukan untuk analisis HAZOP yang efektif pada reaktor sintesis urea. Data-data berikut telah dikumpulkan:

- Process Flow Diagram (PFD) yang menggambarkan jalur produksi CO₂ secara keseluruhan
- Piping and Instrumentation Diagram (P&ID) yang menunjukkan detail instrumen dan loop kontrol
- Data operasi normal reaktor, seperti:
- Tekanan
- o Suhu
- Laju alir
- Data insiden historis dan kejadian nyaris celaka yang memberikan wawasan tentang kegagalan dan risiko di masa lalu
- Standard Operating Procedures (SOP) yang mendokumentasikan metode operasi sistem secara aman

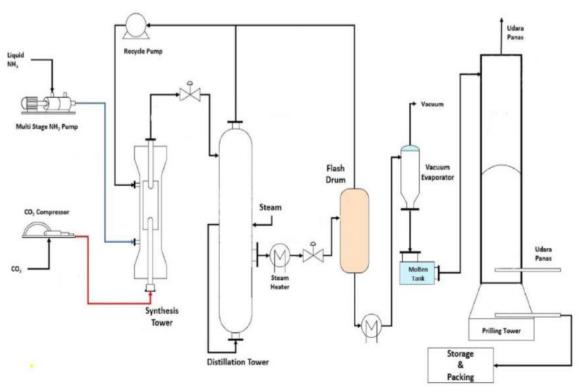
		Probability								
		Very Unlikely (1)	Unlikely (2) 2 Low	Possible (3)	Likely (4)	Very Likely (5) 5 Very High				
Severiity	Minor 1)	1 Low		3 Moderate	5 High					
	Moderate 2)	2 Low	4 Moderate	8 Moderate	10 High	10 Very High				
	Major 3)	3 Low	6 Moderate	12 High	12 High	15 Very High				
	Serious 4)	4 Low	8 High	15 Very High	20 Very High	20 Very High 25 Very High				
		5 Moderate	10 High	15 Very High	20 Very High					
			Prot	ability						

Gambar 2. Matriks Risiko

Peralatan dan data yang digunakan untuk mendukung penelitian ini meliputi:

- Dokumen Process Flow Diagram (PFD) dan Piping and Instrumentation Diagram (P&ID) sebagai referensi visual untuk struktur proses dan tata letak instrumentasi.
- Data operasional dari Distributed Control System (DCS) untuk memahami kondisi proses

secara real-time dan pengaturan parameter.


- Panduan pelaksanaan HAZOP berdasarkan standar IEC 61882, yang memberikan prosedur baku dalam melakukan studi bahaya dan operabilitas.
- Perangkat lunak spreadsheet yang digunakan untuk menyusun dan mengorganisasi tabel HAZOP secara sistematis.

HASIL DAN PEMBAHASAN

Deskripsi Proses Secara Langkah demi Langkah

Berdasarkan skema proses unit produksi CO_2 cair yang ditampilkan, aliran produksi dimulai dengan masuknya gas CO_2 ke dalam Kompresor CO_2 untuk meningkatkan tekanannya. Selanjutnya, gas bertekanan ini dialirkan melalui Menara Sintesis dan Menara Distilasi, yang berfungsi sebagai unit pemurnian untuk menghilangkan berbagai zat pengotor dengan menggunakan uap dan pemanas uap sebagai input. Setelah proses pemurnian, aliran masuk ke dalam Flash Drum, di mana penurunan tekanan menyebabkan pendinginan parsial cairan melalui penguapan cepat. Proses pendinginan selanjutnya dilanjutkan di dalam Evaporator Vakum dengan kondisi vakum untuk menurunkan titik didih CO_2 dan mempermudah proses pelikuifan. CO_2 cair yang dihasilkan kemudian disimpan sementara di Tangki Molten sebelum dipompa ke Menara Prilling, yang menandai produksi CO_2 padat (es kering). Akhirnya, produk CO_2 cair atau padat akan masuk ke tahap Penyimpanan dan Pengemasan untuk distribusi.

SKEMA PROSES UNIT PRODUKSI CO2 CAIR

Gambar 3. Produksi CO₂ Cair

Hasil Analisis HAZOP Produksi CO₂

Tabel 3.1 menyajikan hasil analisis HAZOP yang dilakukan pada Produksi CO₂, mengidentifikasi potensi penyimpangan, penyebabnya, konsekuensi, serta pengaman yang sudah

Tabel 1. Tabel HAZOP untuk Reaktor Pembentukan CO₂

		abci i. i	UDC1 11/ 12	LOP UITLUK REAKTO	or i ciriborita	Kull OO2		
Node (area/unit)	Parameter	Deviation	Guide Word	Cause	Effect	Existing Protection	Likelihood	Recommendati ons
CO2 Compress or	Pressure	Too High	More	C <u>losed</u> Valve, high CO2 load	Overpressure, compressor damage	Relife valve, interlock	Medium	Automatic pressure monitoring, Periodic PSV testing
CO2 Compress or	Flow	Low / No Flow	Less / No	Inlet blockage, compressor malfunction	Downstream process disturbance	Low-flow alarm	Medium	Routine inspection and maintenance
NH₃ Pump	Flow	No Flow	No	Pump failure, ammonia supply interruption	No reaction, system imbalance	Flow sensor, interlock	Medium	Backup pump, quick-response SOP
Synthesis Tower	Temperature	Too High	More	Uncontrolled exothermic reaction	Overheating, potential material failure	Temperature control system	Medium	Automated temperature control and alarms
Synthesis Tower	Flow	Reverse Flow	Reverse	Check valve failure	Feed contamination, system damage	Check valve	Low	Regular check valve inspection
Distillation Tower	Pressure	Too Low	Less	Vacuum leakage	Ineffective separation	Pressure controller	Medium	Leak detection and vacuum maintenance
Flash Drum	Level	Too High	More	Blocked drain	Overflow, liquid spillage	Level indicator and alarm	Low	Drain system maintenance
Vacuum Evaporato r	Vacuum	Low Vacuum	Less	Leak, vacuum pump failure	Reduced evaporation efficiency	Vacuum gauge and alarm	Low	Regular vacuum system inspection
Molten Tank	Temperature	Too Low	Less	Heater malfunction	Product solidification	Temperature sensor	Low	Backup heater, routine maintenance
Prilling Tower	Air Flow	Low	Less	Fan malfunction	Improper prill formation	Fan alarm	Medium	Fan condition monitoring, regular inspection
Storage & Packaging	Temperature	Too High	More	Cooling system failure	Product melting, quality degradation	Temperature sensor, cooling system	Medium	Cooling system checks, high- temp alarm

Pembahasan Hasil Analisis HAZOP

Analisis HAZOP yang komprehensif terhadap unit produksi CO₂ cair di fasilitas produksi urea umum telah mengidentifikasi dan mengevaluasi enam parameter kritis yang sangat penting untuk menjaga kestabilan dan keselamatan proses, yaitu: tekanan, suhu, aliran, komposisi, tingkat pengisian, dan kualitas produk. Evaluasi ini bertujuan untuk mengidentifikasi potensi penyimpangan, memahami penyebab dan konsekuensinya, serta mengusulkan strategi mitigasi untuk meminimalkan risiko proses yang dapat mengancam kelangsungan operasional dan keselamatan kerja.

Tekanan merupakan faktor penting dalam sistem pelikuifan dan penyimpanan CO₂, terutama pada sistem yang beroperasi pada tekanan tinggi. Penyimpangan seperti tekanan berlebih dapat terjadi akibat kegagalan sistem pendingin, masuknya fluida dengan tekanan melebihi desain, atau kerusakan pada sistem kontrol tekanan. Masalah ini dapat menyebabkan kerusakan peralatan, kebocoran gas, bahkan ledakan. Oleh karena itu, penting untuk memastikan bahwa sistem proteksi seperti Pressure Safety Valve (PSV), interlock tekanan, dan mekanisme blowdown berfungsi dengan baik melalui pemeliharaan preventif yang konsisten.

Fluktuasi suhu juga menimbulkan risiko signifikan. Suhu yang terlalu tinggi dapat meningkatkan tekanan sistem melewati batas aman dan merusak integritas peralatan. Sebaliknya, suhu yang terlalu rendah dapat menyebabkan pembentukan CO₂ padat (es kering) yang dapat menyumbat aliran proses. Strategi mitigasi meliputi kalibrasi sistem kontrol suhu, pemantauan waktu nyata melalui sensor, serta penggunaan alarm suhu tinggi dan rendah. Sistem pendingin cadangan dan prosedur tanggap darurat juga harus disiapkan.

Masalah aliran, terutama kondisi aliran rendah atau tidak ada aliran, dapat muncul akibat kegagalan pompa atau kompresor, penyumbatan pipa, atau penutupan katup yang tidak disengaja. Situasi ini dapat mengganggu pelikuifan dan pengangkutan CO₂. Tindakan pencegahan meliputi pemasangan transmitter aliran, inspeksi rutin, dan penerapan prosedur lock-out/tag-out yang ketat. Selain itu, pemantauan aliran berlebih juga penting untuk mencegah kapasitas peralatan terlampaui.

Meskipun CO₂ yang masuk ke unit pelikuifan umumnya merupakan produk sampingan dari proses produksi urea, perubahan komposisi yang signifikan (misalnya kontaminasi dengan gas lain atau kadar air yang tinggi) dapat mempengaruhi efisiensi pelikuifan dan kualitas produk CO₂ cair. Implementasi sistem analisis komposisi secara online atau pengambilan sampel rutin untuk analisis laboratorium, serta pengendalian kualitas gas CO₂ sumber, merupakan langkah penting untuk menjaga kualitas produk.

Penyimpangan komposisi seperti peningkatan kadar pengotor atau air dapat menurunkan efisiensi pelikuifan dan kualitas produk. Karena CO₂ yang digunakan biasanya merupakan produk sampingan dari produksi urea, menjaga kemurniannya sangatlah penting. Penggunaan analyzer online, pengambilan sampel rutin, dan pengendalian kualitas gas sumber menjadi kunci untuk memastikan keluaran yang konsisten.

Tingkat pengisian dalam tangki penyimpanan juga harus dikelola dengan cermat. Pengisian berlebih dapat menyebabkan kerusakan tangki atau pelepasan CO₂ yang tidak disengaja, sementara pengisian kurang dapat mengganggu operasi pompa. Sistem kontrol level yang akurat dengan alarm serta prosedur pengisian dan pengeluaran yang jelas sangat penting untuk operasi yang aman.

Terakhir, penyimpangan kualitas produk—seperti kandungan air atau tingkat kontaminan yang berlebihan—dapat membatasi penggunaan CO₂ cair dalam berbagai aplikasi industri. Penggunaan pengering dan sistem pemurnian, bersama dengan penilaian kualitas produk secara rutin, membantu memastikan CO₂ memenuhi spesifikasi yang dibutuhkan.

Analisis HAZOP ini memberikan pendekatan terstruktur untuk mengidentifikasi dan mengelola potensi bahaya dalam produksi CO₂ cair di fasilitas produksi urea umum. Wawasan yang diperoleh menjadi dasar untuk menerapkan langkah-langkah pengendalian risiko yang efektif dan meningkatkan keselamatan proses secara keseluruhan.

KESIMPULAN

Analisis HAZOP pada unit produksi CO₂ cair di fasilitas produksi urea umum mengidentifikasi enam parameter proses utama—tekanan, suhu, aliran, komposisi, tingkat pengisian, dan kualitas produk—sebagai faktor kritis untuk memastikan operasi yang aman dan efisien. Penyimpangan pada parameter-parameter ini ditemukan dapat menimbulkan bahaya signifikan. Misalnya, tekanan berlebih akibat kegagalan sistem pendingin atau katup yang rusak dapat menyebabkan beban berlebih pada sistem, yang berpotensi merusak peralatan dan memaksa penghentian darurat. Suhu tinggi akibat kerusakan sistem pendingin dapat memicu peningkatan tekanan yang tidak terkendali, sementara kondisi aliran yang tidak normal—seperti aliran masuk yang kurang atau aliran keluar yang berlebihan—dapat mengganggu efisiensi pelikuifan dan pemindahan CO₂.

Variasi komposisi gas CO₂ masuk, terutama jika mengandung kontaminan berlebih, dapat menurunkan efisiensi pelikuifan dan menurunkan kualitas produk akhir. Selain itu, tingkat pengisian yang salah dalam tangki penyimpanan, baik terlalu penuh maupun terlalu sedikit, dapat menimbulkan tantangan operasional dan keselamatan. Karena kualitas produk sangat penting bagi kegunaan CO₂ cair, setiap penyimpangan dari spesifikasi dapat membatasi penggunaannya dalam berbagai aplikasi industri.

Untuk mengatasi risiko-risiko ini, studi ini merekomendasikan penerapan sistem interlock, pemasangan alarm tekanan dan suhu tinggi/rendah, serta penerapan kontrol pemantauan aliran dan tingkat pengisian secara komprehensif. Langkah-langkah ini harus didukung oleh rutinitas pemeliharaan preventif yang ketat sesuai dengan standar HAZOP IEC 61882. Pada akhirnya, memastikan keberlanjutan, keselamatan, dan efektivitas proses produksi CO₂ cair memerlukan kombinasi perlindungan teknis yang kuat dan praktik operasional yang proaktif.

PENUTUP

Para penulis mengucapkan terima kasih yang sebesar-besarnya kepada fasilitas produksi urea umum yang telah memberikan akses terhadap data proses penting, dokumentasi operasional, dan wawancara teknis yang sangat krusial untuk penyelesaian studi ini. Apresiasi juga disampaikan kepada personel Keselamatan dan Kesehatan Kerja (K3) serta insinyur proses yang terlibat dalam sesi HAZOP atas wawasan berharga dan kontribusi profesional mereka. Penelitian ini dilakukan sebagai bagian dari inisiatif akademik Institut Teknologi

Nasional Bandung, tanpa dukungan pendanaan eksternal khusus.

DAFTAR PUSTAKA

- Agency, I. A. E. (1993). Use of probabilistic safety assessment for nuclear installations with large inventory of radioactive material June
- Agency, I. A. E. (2002). Procedures for conducting probabilistic safety assessment for non reactor nuclear facilities (IAEA TECDOC1267). January. https://www-pub.iaea.org/MTCD/Publications/PDF/te_1267_prn.pdf
- Agency, I. A. E. (2010). Licensing Process for Nuclear Installations.
- Ali, M., Ul-Hamid, A., Alhems, L. M., & Saeed, A. (2020). Review of common failures in heat exchangers—Part I: Mechanical and elevated temperature failures. Engineering Failure Analysis,109 (December 2018), 104396. https://doi.org/10.1016/j.engfailanal.2020.104396
- Badan Tenaga Nuklir Nasional. (2019). BATAN Standard guidance 006
- -1–BATAN:2019. In Batan. Bragatto, P., & Milazzo, M. F. (2016). Risk due to the ageing of equipment: Assessment and management. Chemical Engineering Transactions, 53 (September), 253–258. https://doi.org/10.3303/CET1653043
- Donald Coffelt; Chris Hendrickson. (2021). Failure Rates and Survival Probabilities. In Fundamentals of Infrastructure Management
- (pp.4-
- 7).https://biz.libretexts.org/Bookshelves/Management/Book%3A_Fundamentals_of_Infrastructure_ _Management_(Coffelt_and_Hendrickson)
- Efremenkov, V. . (1989). Radioactive waste management of nuclear power plants. IAEA Bulletin, 4, 37–42.
- Fatma, N. F., Ponda, H., & Kuswara, R. A. (2020). Analisis Preventive Maintenance Dengan Metode Menghitung Mean Time Between Failure (Mtbf) Dan Mean Time To Repair (Mttr) (Studi Kasus Pt. Gajah Tunggal Tbk). Heuristic, 17 (2), 87–94.
- https://doi.org/10.30996/heuristic.v17i2.4648
- Håbrekke, S., Bodsberg, L., Hokstad, P., & Ersdal, G. (2011). Issues for consideration in life extension and managing ageing facilities.
- Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE, 3 (July 2014), 173 –182.https://doi.org/10.1115/OMAE2011-49261
- Health and Safety Executive. (2014). Risk Assessment: A Brief Guide To Controlling Risks In The Workplace. Toxicologic Pathology. www.hse.gov.uk/pubns/indg163.htm
- Henrique, A., Melani, A., Alberto, C., Caminada, A., Francisco, G., Souza, M. De, & Ikuyo, S. (2018). Criticality-based maintenance of a coal-fired power plant. 147.
- Hutter,G.M.(2007). Interlocks as machine safety devices. https://www.thefabricator.com/thefabricator/article/safety/interlocks-as-machine-safety-devices

- Kościelny, J. M., Syfert, M., Fajdek, B., & Kozak, A. (2017). The application of a graph of aprocess in HAZOP analysis in accident prevention system. Journal of Loss Prevention in the Process Industries,50, 55–66. https://doi.org/10.1016/j.jlp.2017.09.003
- Kotek, L., & Tabas, M. (2012). HAZOP study with qualitative risk analysis for prioritization of corrective and preventive actions.
- Procedia Engineering, 42 (August), 808–815. https://doi.org/10.1016/j.proeng.2012.07.473
- Meng, Y., Song, X., Zhao, D., & Liu, Q. (2021). Alarm management optimization in chemical installations based on adapted HAZOP reports. Journal of Loss Prevention in the Process Industries, 72 (January). https://doi.org/10.1016/j.jlp.2021.104578
- Mokhtarname, R., Safavi, A. A., Urbas, L., Salimi, F., Zerafat, M. M., & Harasi, N. (2022). Application of multivariable process monitoring techniques to HAZOP studies of complex processes. Journal of Loss Prevention in the Process Industries, 74 (October 2021), 104674. https://doi.org/10.1016/j.jlp.2021.104674
- Nguyen, H. T., Safder, U., Kim, J. I., Heo, S. K., & Yoo, C. K. (2022). An adaptive safety-risk mitigation plan at process-level for sustainable production in chemical industries: Anintegrated fuzzy-HAZOP-best-worst approach. Journal of Cleaner Production,339 (February 2021), 130780. https://doi.org/10.1016/j.jclepro.2022.130780
- Okoshi, M., & Momma, T. (2015). Radioactive Waste Treatment Technologies. In S. Nagasaki & S. Nakayama (Eds.), Radioactive Waste Engineering and Management (pp. 119–151). Springer Japan. https://doi.org/10.1007/978-4-431-55417-2 5
- RADIOAKTIF, P. T. L. (2017). Laporan Analisis Keselamatan Instalasi Pengolahan Limbah Radioaktif.
- Suzuki, T., Izato, Y. ichiro, & Miyake, A. (2021). Identification of accident scenarios caused by internal factors using HAZOP to assess an organic hydride hydrogen refueling station involving methylcyclohexane. Journal of Loss Prevention in the Process Industries,71 (April 2020), 104479. https://doi.org/10.1016/j.jlp.2021.104479